Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673986

RESUMO

The circadian rhythms generated by the master biological clock located in the brain's hypothalamus influence central physiological processes. At the molecular level, a core set of clock genes interact to form transcription-translation feedback loops that provide the molecular basis of the circadian rhythm. In animal models of disease, a desynchronization of clock genes in peripheral tissues with the central master clock has been detected. Interestingly, patients with vascular dementia have sleep disorders and irregular sleep patterns. These alterations in circadian rhythms impact hormonal levels, cardiovascular health (including blood pressure regulation and blood vessel function), and the pattern of expression and activity of antioxidant enzymes. Additionally, oxidative stress in vascular dementia can arise from ischemia-reperfusion injury, amyloid-beta production, the abnormal phosphorylation of tau protein, and alterations in neurotransmitters, among others. Several signaling pathways are involved in the pathogenesis of vascular dementia. While the precise mechanisms linking circadian rhythms and vascular dementia are still being studied, there is evidence to suggest that maintaining healthy sleep patterns and supporting proper circadian rhythm function may be important for reducing the risk of vascular dementia. Here, we reviewed the main mechanisms of action of molecular targets related to the circadian cycle and oxidative stress in vascular dementia.


Assuntos
Ritmo Circadiano , Demência Vascular , Estresse Oxidativo , Animais , Humanos , Relógios Circadianos/genética , Demência Vascular/tratamento farmacológico , Demência Vascular/metabolismo , Demência Vascular/patologia , Demência Vascular/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Terapia de Alvo Molecular
2.
Brain Sci ; 13(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37891841

RESUMO

Frontotemporal lobar degeneration (FTLD) belongs to a heterogeneous group of highly complex neurodegenerative diseases and represents the second cause of presenile dementia in individuals under 65. Frontotemporal-TDP is a subgroup of frontotemporal dementia characterized by the aggregation of abnormal protein deposits, predominantly transactive response DNA-binding protein 43 (TDP-43), in the frontal and temporal brain regions. These deposits lead to progressive degeneration of neurons resulting in cognitive and behavioral impairments. Limbic age-related encephalopathy (LATE) pertains to age-related cognitive decline primarily affecting the limbic system, which is crucial for memory, emotions, and learning. However, distinct, emerging research suggests a potential overlap in pathogenic processes, with some cases of limbic encephalopathy displaying TDP-43 pathology. Genetic factors play a pivotal role in both disorders. Mutations in various genes, such as progranulin (GRN) and chromosome 9 open reading frame 72 (C9orf72), have been identified as causative in frontotemporal-TDP. Similarly, specific genetic variants have been associated with an increased risk of developing LATE. Understanding these genetic links provides crucial insights into disease mechanisms and the potential for targeted therapies.

3.
Int J Neurosci ; : 1-13, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36453541

RESUMO

Aim: To review the main pathological findings of Neuromyelitis Optica Spectrum Disorder (NMOSD) associated with the presence of autoantibodies to aquaporin-4 (AQP4) as well as the mechanisms of astrocyte dysfunction and demyelination. Methods: An comprehensive search of the literature in the field was carried out using the database of The National Center for Biotechnology Information from . Systematic searches were performed until July 2022. Results: NMOSD is an inflammatory and demyelinating disease of the central nervous system mainly in the areas of the optic nerves and spinal cord, thus explaining mostly the clinical findings. Other areas affected in NMOSD are the brainstem, hypothalamus, and periventricular regions. Relapses in NMOSD are generally severe and patients only partially recover. NMOSD includes clinical conditions where autoantibodies to aquaporin-4 (AQP4-IgG) of astrocytes are detected as well as similar clinical conditions where such antibodies are not detected. AQP4 are channel-forming integral membrane proteins of which AQ4 isoforms are able to aggregate in supramolecular assemblies termed orthogonal arrays of particles (OAP) and are essential in the regulation of water homeostasis and the adequate modulation of neuronal activity and circuitry. AQP4 assembly in orthogonal arrays of particles is essential for AQP4-IgG pathogenicity since AQP4 autoantibodies bind to OAPs with higher affinity than for AQP4 tetramers. NMOSD has a complex background with prominent roles for genes encoding cytokines and cytokine receptors. AQP4 autoantibodies activate the complement-mediated inflammatory demyelination and the ensuing damage to AQP4 water channels, leading to water influx, necrosis and axonal loss. Conclusions: NMOSD as an astrocytopathy is a nosological entity different from multiple sclerosis with its own serological marker: immunoglobulin G-type autoantibodies against the AQP4 protein which elicits a complement-dependent cytotoxicity and neuroinflammation. Some patients with typical manifestations of NMSOD are AQP4 seronegative and myelin oligodendrocyte glycoprotein positive. Thus, the detection of autoantibodies against AQP4 or other autoantibodies is crucial for the correct treatment of the disease and immunosuppressant therapy is the first choice.

4.
Nutr Hosp ; 39(6): 1364-1368, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36327127

RESUMO

Introduction: Background: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence of neuritic plaques and neurofibrillary tangles that finally result in synaptic and neuronal loss. Oxidative stress accompanies pathological changes in AD. Objective: to assess the efficacy of dietary omega 3 polyunsaturated fatty acids supplementation on the levels of proteins oxidation, hydroperoxides and enzymatic activities of catalase and superoxide dismutase in AD patients. Methods: clinical, controlled, randomized, double-blind trial. Patients consumed fish oil or placebo for one year. Oxidative stress markers were assessed in plasma using spectrophotometric methods. Results: carbonyl groups in proteins and hydroperoxides in plasma have similar values in both treatment groups at the beginning of the study. At six and 12 months of treatment, these values decreased significantly in the fish oil group, while in the placebo group no changes were observed in both oxidative stress markers. Catalase activity increased significantly at six and twelve months after treatment in patients treated with fish oil. While the superoxide dismutase activity was not modified in both study groups. Conclusions: patients who consume omega 3 polyunsaturated fatty acids at a stable dose of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) show decreased oxidation of proteins and lipids in plasma. In addition, an increase in catalase activity was detected. Thus, the presented data warrants further studies evaluating the antioxidant effect of omega 3 polyunsaturated fatty acids.


Introducción: Antecedentes: la enfermedad de Alzheimer (EA) es un trastorno neurodegenerativo caracterizado por la presencia de placas neuríticas y ovillos neurofibrilares que finalmente resultan en pérdida sináptica y neuronal. El estrés oxidativo acompaña los cambios patológicos en la EA. Objetivo: evaluar la eficacia de la suplementación dietética con ácidos grasos poliinsaturados omega 3 sobre los niveles de oxidación de proteínas, hidroperóxidos y actividades enzimáticas de catalasa y superóxido dismutasa en pacientes con EA. Métodos: ensayo clínico, controlado, aleatorizado, doble ciego. Los pacientes consumieron aceite de pescado o placebo durante un año. Los marcadores de estrés oxidativo se evaluaron en plasma mediante métodos espectrofotométricos. Resultados: los grupos carbonilo en proteínas e hidroperóxidos en plasma tuvieron valores similares en ambos grupos de tratamiento al inicio del estudio. A los seis y 12 meses de tratamiento estos valores disminuyeron significativamente en el grupo de aceite de pescado, mientras que en el grupo placebo no se observaron cambios en ambos marcadores. La actividad de catalasa aumentó significativamente a los seis y doce meses después del tratamiento en pacientes tratados con aceite de pescado; sin embargo, la actividad superóxido dismutasa no se modificó en ambos grupos de estudio. Conclusiones: los pacientes que consumieron los ácidos grasos poliinsaturados omega 3 a una dosis estable de ácido docosahexaenoico (DHA) y ácido eicosapentaenoico (EPA) muestran una oxidación reducida de proteínas y lípidos en plasma. Además, se detectó un aumento en la actividad de la catalasa. Por tanto, los datos presentados justifican más estudios que evalúen el efecto antioxidante de dichos ácidos grasos.


Assuntos
Doença de Alzheimer , Ácidos Graxos Ômega-3 , Humanos , Antioxidantes , Doença de Alzheimer/tratamento farmacológico , Catalase , Suplementos Nutricionais , Óleos de Peixe , Ácido Eicosapentaenoico , Ácidos Docosa-Hexaenoicos , Superóxido Dismutase , Método Duplo-Cego
5.
Brain Sci ; 12(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36291338

RESUMO

The COVID-19 pandemic has proven to be a challenge for healthcare systems, especially in terms of the care of patients with Alzheimer's disease (AD). Age is one of the major risk factors for severe forms of COVID-19, most probably due to the presence of comorbidities and inflammations. It is known that SARS-CoV-2 invades nerve endings and olfactory nerves through the binding of the spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor. This interaction triggers an inflammatory cascade that results in cognitive impairment. In turn, the isoform of apolipoprotein-E4 (APOE-4ε) in AD is a risk factor for increased neuroinflammation through microglia activation, increased oxidative stress, and neurodegeneration. AD and SARS-CoV-2 are associated with increases in levels of inflammatory markers, as well as increases in levels of APOE-4ε, ACE2 and oxidative stress. Thus, there is a synergistic relationship between AD and SARS-CoV-2. In addition, the social isolation and other health measures resulting from the pandemic have led to a higher level of anxiety and depression among AD patients, a situation which may lead to a decline in cognitive function. Therefore, there is a need to develop strategies for keeping the patient calm but active.

6.
Molecules ; 27(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35956837

RESUMO

Psychoneuroendocrinoimmunology is the area of study of the intimate relationship between immune, physical, emotional, and psychological aspects. This new way of studying the human body and its diseases was initiated in the last century's first decades. However, the molecules that participate in the communication between the immune, endocrine, and neurological systems are still being discovered. This paper aims to describe the development of psychoneuroendocrinoimmunology, its scopes, limitations in actual medicine, and the extent of melatonin within it.


Assuntos
Melatonina , Sistema Endócrino , Humanos
7.
Oxid Med Cell Longev ; 2021: 5577541, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707777

RESUMO

Mitochondrial dysfunction and oxidative stress are extensively linked to Parkinson's disease (PD) pathogenesis. Melatonin is a pleiotropic molecule with antioxidant and neuroprotective effects. The aim of this study was to evaluate the effect of melatonin on oxidative stress markers, mitochondrial complex 1 activity, and mitochondrial respiratory control ratio in patients with PD. A double-blind, cross-over, placebo-controlled randomized clinical trial study was conducted in 26 patients who received either 25 mg of melatonin or placebo at noon and 30 min before bedtime for three months. At the end of the trial, in patients who received melatonin, we detected a significant diminution of lipoperoxides, nitric oxide metabolites, and carbonyl groups in plasma samples from PD patients compared with the placebo group. Conversely, catalase activity was increased significantly in comparison with the placebo group. Compared with the placebo group, the melatonin group showed significant increases of mitochondrial complex 1 activity and respiratory control ratio. The fluidity of the membranes was similar in the melatonin group and the placebo group at baseline and after three months of treatment. In conclusion, melatonin administration was effective in reducing the levels of oxidative stress markers and restoring the rate of complex I activity and respiratory control ratio without modifying membrane fluidity. This suggests that melatonin could play a role in the treatment of PD.


Assuntos
Antioxidantes/uso terapêutico , Antiparkinsonianos/uso terapêutico , Melatonina/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Antioxidantes/efeitos adversos , Antiparkinsonianos/efeitos adversos , Biomarcadores/sangue , Respiração Celular/efeitos dos fármacos , Estudos Cross-Over , Método Duplo-Cego , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Melatonina/efeitos adversos , México , Mitocôndrias/metabolismo , Doença de Parkinson/sangue , Doença de Parkinson/diagnóstico , Fatores de Tempo , Resultado do Tratamento
8.
Int J Neurosci ; 131(12): 1221-1230, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32571126

RESUMO

Efficient communication between the glial cells and neurons is a bi-directional process that is essential for conserving normal functioning in the central nervous system (CNS). Neurons dynamically regulate other brain cells in the healthy brain, yet little is known about the first pathways involving oligodendrocytes and neurons. Oligodendrocytes are the myelin-forming cells in the CNS that are needed for the propagation of action potentials along axons and additionally serve to support neurons by neurotrophic factors (NFTs). In demyelinating diseases, like multiple sclerosis (MS), oligodendrocytes are thought to be the victims. Axonal damage begins early and remains silent for years, and neurological disability develops when a threshold of axonal loss is reached, and the compensatory mechanisms are depleted. Three hypotheses have been proposed to explain axonal damage: 1) the damage is caused by an inflammatory process; 2) there is an excessive accumulation of intra-axonal calcium levels; and, 3) demyelinated axons evolve to a degenerative process resulting from the lack of trophic support provided by myelin or myelin-forming cells. Although MS was traditionally considered to be a white matter disease, the demyelination process also occurs in the cerebral cortex. Recent data supports the notion that initial response is triggered by CNS injury. Thus, the understanding of the role of neuron-glial neurophysiology would help provide us with further explanations. We should take in account the suggestion that MS is in part an autoimmune disease that involves genetic and environmental factors, and the pathological response leads to demyelination, axonal loss and inflammatory infiltrates.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Imunidade/fisiologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/fisiopatologia , Oligodendroglia/fisiologia , Animais , Fenômenos Eletrofisiológicos/imunologia , Humanos , Imunidade/imunologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Oligodendroglia/imunologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia
9.
Arch. latinoam. nutr ; 70(2): 123-133, jun. 2020. tab, ilus
Artigo em Espanhol | LIVECS, LILACS | ID: biblio-1140336

RESUMO

High intake of omega-3 fatty acids has been associated with synaptic plasticity, neurogenesis and memory in several experimental models. To assess the efficacy of fish oil supplementation on oxidative stress markers in patients diagnosed with probable Alzheimer´s disease (AD) we conducted a double blind, randomized, placebo controlled clinical trial. AD patients who met the inclusive criteria were given fish oil (containing 0.45 g eicosapentaenoic acid and 1 g docosahexaenoic acid) or placebo daily for 12 months. Oxidative stress markers [lipoperoxides, nitric oxide catabolites levels, oxidized/reduced glutathione ratio, and membrane fluidity] and fatty acid profile in erythrocytes were assessed at enrollment, and 6 and 12 months after the start of the testing period. At the end of the trial, in patients who received fish oil, we detected a decrease in the omega 6/omega 3 ratio in erythrocyte membrane phospholipids. This change was parallel with decreases in plasma levels of lipoperoxides and nitric oxide catabolites. Conversely, the ratio of reduced to oxidized glutathione was significantly increased. In addition, membrane fluidity was increased significantly in plasma membrane samples. In conclusion fish oil administration has a beneficial effect in decreasing the levels of oxidative stress markers and improving the membrane fluidity in plasma(AU)


El alto consumo de ácidos grasos omega-3 se asocia con la plasticidad sináptica, neurogénesis y memoria en varios modelos experimentales. Para evaluar la eficacia de la suplementación con aceite de pescado en los marcadores de estrés oxidativo en pacientes con diagnóstico de la enfermedad de Alzheimer (EA) probable realizamos un ensayo clínico doble ciego, aleatorizado, controlado con placebo. A los pacientes con la EA que cumplían los criterios de inclusión se les administró aceite de pescado (que contenía 0,45 g de ácido eicosapentaenoico y 1 g de ácido docosahexaenoico) o placebo diariamente durante 12 meses. Los marcadores de estrés oxidativo plasmático [niveles de lipoperóxidos y catabolitos del óxido nítrico, cociente de glutatión reducido a glutatiónoxidado) y fluidez de la membrana] y el perfil de ácidos grasos en los eritrocitos se evaluaron al inicio, 6 meses y alos 12 meses. Al final del ensayo, en pacientes que recibieron aceite de pescado detectamos una disminución en el cociente de ácidos grasos omega 6/omega 3 en los fosfolípidos de la membrana eritrocitaria. Este cambio ocurrió en paralelo a la disminución de los niveles plasmáticos de lipoperóxidos y catabolitos del óxido nítrico. Por el contrario, el cociente de glutatión reducido a glutatión oxidado se incrementó significativamente. Además, la fluidez de la membrana aumentó significativamente en las muestras analizadas. En conclusión, la administración de aceite de pescado tiene un efecto beneficioso al disminuir los niveles de marcadores de estrés oxidativo plasmático y mejorar la fluidez de la membrana plasmática(AU)


Assuntos
Humanos , Masculino , Feminino , Óleos de Peixe , Ácidos Graxos Ômega-3 , Estresse Oxidativo , Doença de Alzheimer , Membrana Celular , Doença Crônica , Neurogênese
10.
Arch Med Res ; 49(6): 391-398, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30595364

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory disease, which leads to focal plaques of demyelination and tissue injury in the central nervous system (CNS). Neuroinflammation and oxidative stress are involved in the pathogenesis of MS, promoting tissue damage and demielinization. Current research findings suggest that melatonin has antioxidant and neuroprotective effects. The aim of this study was to evaluate the efficacy of melatonin on serum pro-inflammatory cytokines and oxidative stress markers in relapsing-remitting multiple sclerosis (RRMS). 36 patients diagnose with RRMS treated with Interferon ß-1b (IFNß-1b) were enrolled in a double bind, randomized, placebo controlled trial. The experimental group received orally 25 mg/d of melatonin for 6 months. After melatonin administration, we observed a significant decrease in serum concentration of pro-inflammatory cytokines and oxidative stress markers; 18% for TNF-α (p <0.05), 34.8% for IL-1ß (p <0.05), 34.7% for IL-6 (p <0.05), 39.9% for lipoperoxides (LPO) (p <0.05) and 24% for nitric oxide catabolites (NOC) levels (p <0.05), compared with placebo group. No significant difference in clinical efficacy outcomes were found between groups. Melatonin treatment was well tolerated and we did not observe significant differences in rates of side effects between the two groups. We concluded that melatonin administration during 6 months period is effective in reducing levels of serum pro-inflammatory cytokines and oxidative stress markers in patients with RRMS. These data support future studies evaluating the safety and effectiveness of melatonin supplementation in RRMS patients.


Assuntos
Antioxidantes/uso terapêutico , Citocinas/sangue , Melatonina/uso terapêutico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Adulto , Biomarcadores/metabolismo , Método Duplo-Cego , Feminino , Humanos , Interferon beta/uso terapêutico , Interleucina-1beta/sangue , Interleucina-1beta/metabolismo , Interleucina-6/sangue , Peróxidos Lipídicos/sangue , Masculino , Melatonina/efeitos adversos , Pessoa de Meia-Idade , Óxido Nítrico , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...